Archive for the ‘Development’ Category

CNS Meeting 2008: Development of Cognitive Control

Saturday, April 19th, 2008

I just got back from CNS a few days ago. I thought I’d write a quick summary of one of the more interesting symposia at the conference.

Taking place Monday (4/14) afternoon, The rise and fall of cognitive control: Lifespan development covered how executive brain functions develop and peak in the 20s and 30s, falling again toward the end of life.

The first talk, by Cindy Lustig, reported on a functional MRI study of 239 individuals ranging from 9 to 97 years of age. She found that the “default-network” brain activity (likely related to mind wandering) was better suppressed during difficult tasks early in life and decreased later in life. This suggests that difficulties older people have with hard tasks may originate in their poor ability to reduce background thoughts.

Adele Diamond gave the next talk, which focused on an impressive preschool program that improves cognitive control in children to help them with future school success. The program, called Tools of the Mind, is based on research showing that self-regulation (i.e., cognitive control) is very predictive of future academic success. The program successfully integrates with the children’s play, and Dr. Diamond’s research shows convincingly that it is able to improve cognitive control and subsequent school success. The above photo is of two children “playing” the program’s ‘Buddy Reading’ task, which promotes inhibition of inappropriate impulses using a reminder icon held by the child in the role of listener (on the right in the above photo).

The final talk, by Bradley Schlaggar of Washington University at St. Louis, described tracking changes in resting state connectivity with development. As presented by Steven Petersen at HBM 2007, Dr. Schlaggar showed how dorsal anterior cingulate changes its membership in networks over time. The idea of showing how regional membership in global networks can change with development is very exciting and will certainly lead to future insights into human developmental processes.

-MWCole

History’s Top Brain Computation Insights: Day 19

Friday, April 20th, 2007

Center-surround organization used in SOMs19) Neural networks can self-organize via competition (Grossberg – 1978, Kohonen – 1981)

Hubel and Wiesel's work with the development  of cortical columns (see previous post) hinted at it, but it wasn't until Grossberg and Kohonen built computational architectures explicitly exploring competition that its importance was made clear.

Grossberg was the first to illustrate the possibility of self-organization via competition. Several years later Kohonen created what is now termed a Kohonen network, or self-organizing map (SOM). This kind of network is composed of layers of neuron-like units connected with local excitation and, just outside that excitation, local inhibition. The above figure illustrates this 'Mexican hat' function in three dimensions, while the figure below represents it in two dimensions along with its inputs.

These networks, which implement Hebbian learning, will spontaneously organize into topographic maps.

For instance, line orientations that are similar to each other will tend to be represented by nearby neural units, while less similar line orientations will tend to be represented by more distant neural units. This occurs even when the map starts out with random synaptic weights. Also, this spontaneous organization will occur for even very complex stimuli (e.g., faces) as long as there are spatio-temporal regularities in the inputs.

Another interesting feature of Kohonen networks is that the more frequent input patterns are represented by larger areas in the map. This is consistent with findings in cortex, where more frequently used representations have larger cortical areas dedicated to them.

There are several computational advantages to having local competition between similar stimuli, which SOMs can provide.

One such advantage is that local competition can increase specificity of the representation by ruling out close alternatives via lateral inhibition. Using this computational trick, the retina can discern visual details better at the edges of objects (due to contrast enhancement).

Another computational advantage is enhancement of what's behaviorally important relative to what isn't. This works on a short time-scale with attention (what's not important is inhibited), and on a longer time-scale with increases in representational space in the map with repeated use, which increases representational resolution (e.g., the hand representation in the somatosensory homonculus).

You can explore SOMs using Topographica, a computational modeling environment for simulating topographic maps in cortex. Of special interest here is the SOM tutorial available at topographica.org.


Implication: The mind, largely governed by reward-seeking behavior on a continuum between controlled and automatic processing, is implemented in an electro-chemical organ with distributed and modular function consisting of excitatory and inhibitory neurons communicating via ion-induced action potentials over convergent and divergent synaptic connections strengthened by correlated activity. The cortex, a part of that organ organized via local competition and composed of functional column units whose spatial dedication determines representational resolution, is composed of many specialized regions involved in perception (e.g., touch: parietal, vision: occipital), action (e.g., frontal), and memory (e.g.,short-term: prefrontal, long-term: temporal),which depend on inter-regional communication for functional integration.

[This post is part of a series chronicling history's top brain computation insights (see the first of the series for a detailed description). See the history category archive to see all of the entries thus far.]

-MC

History’s Top Brain Computation Insights: Day 16

Tuesday, April 17th, 2007

Effect of monocular deprivation on ocular dominance columns16) Critical periods of cortical development via competition (Hubel & Wiesel – 1970)

Hubel & Wiesel showed that the ocular dominance columns they had discovered in cortex (see previous post) are organized during a critical period of development. Keeping one eye of an animal shut during the first few months of life made that animal blind in that eye for the rest of its life. Keeping the eye shut for the same amount of time later in life had no such effect.

Hubel & Wiesel found that the ocular dominance columns became lopsided in such a case: The functional eye tended to take over cortical space not used by the blind eye. This finding extended Penfield's notion that the amount of cortical space dedicated to a function determines its resolution. In this case, visual acuity was decreased through smaller cortical space for the unused eye.

Importantly, this experiment illustrated that the eyes compete for cortical space, with the most active eye claiming the most space. Generalizing this finding, it appears that many representations in cortex compete for space, whether it is in visual, motor, or somatosensory cortex.

V. S. Ramachandran applied these findings in an interesting case involving phantom limb pain. He found that many patients who still felt pain in their amputated hand also reported feeling a touch on that phantom hand when their face was touched. As can be seen in the second figure of the previous post on the sensory-motor homunculus, the hand and face representations are next to each other in cortex.

Ramachandran interpreted this to mean that the loss of input from the hand allows the face representation to win its competition with the hand representation, allowing it take over the cortical space previously dedicated to the hand. This also suggests that this competition continues into adulthood in some cases.

Implication: The mind, largely governed by reward-seeking behavior, is implemented in an electro-chemical organ with distributed and modular function consisting of excitatory and inhibitory neurons communicating via ion-induced action potentials over convergent and divergent synaptic connections strengthened by correlated activity. The cortex, a part of that organ composed of functional column units whose spatial dedication (determined via local competition) determines representational resolution, is composed of many specialized regions involved in perception (e.g., touch: parietal lobe, vision: occipital lobe), action (e.g., frontal lobe), and memory (e.g., temporal lobe), which depend on inter-regional communication for functional integration.

[This post is part of a series chronicling history's top brain computation insights (see the first of the series for a detailed description). See the history category archive to see all of the entries thus far.]

-MC